Reproducibility in neuroimaging: What is the problem?

Russell Poldrack

Department of Psychology Stanford University

A HINT TO PHRENOLOGISTS; or, "September 20, 1878."

Science in crisis (?)

IN THE WAKE OF HIGH-PROFILE CONTROVERSIES, PSYCHOLOGISTS Are facing up to problems with replication.

BY ED YONG

Rigorous replication effort succeeds for just two of five cancer papers

By Jocelyn Kaiser | Jan. 18, 2017, 1:00 PM

Raise standards for preclinical cancer research

C. Glenn Begley and Lee M. Ellis propose how methods, publications and incentives must change if patients are to benefit.

29 MARCH 2012 | VOL 483 | NATURE | 531

PSYCHOLOGY

Estimating the reproducibility of psychological science

Open Science Collaboration*

SCIENCE sciencemag.org 28 AUGUST 2015 • VOL 349 ISSUE 6251

We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available.

Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results

Essay

Why Most Published Research Findings Are False

John P. A. Ioannidis

. PLoS Medicine | www.plosmedicine.org

0696

August 2005 | Volume 2 | Issue 8 | e124

- The smaller the studies conducted in a scientific field, the less likely the research findings are to be true.
- The greater the number and the lesser the selection of tested relationships in a scientific field, the less likely the research findings are to be true.
- The greater the flexibility in designs, definitions, outcomes, and analytical modes in a scientific field, the less likely the research findings are to be true.
- The hotter a scientific field (with more scientific teams involved), the less likely the research findings are to be true.

Altered Brain Activity in Unipolar Depression Revisited

Meta-analyses of Neuroimaging Studies

Veronika I. Müller, PhD^{1,2}; Edna C. Cieslik, PhD^{1,2}; Ilinca Serbanescu, MSc¹; <u>et al</u>

JAMA Psychiatry. 2017;74(1):47-55.

Overall analyses across cognitive processing experiments (P>. 29) and across emotional processing experiments (P>.47) revealed no significant results. Similarly, no convergence was found in analyses investigating positive (all P>.15), negative (all P>.76), or memory (all P>.48) processes. Analyses that restricted inclusion of confounds (eg, medication, comorbidity, age) did not change the results.

Neuroimaging: a perfect storm for irreproducibility

https://upload.wikimedia.org/wikipedia/commons/5/59/The_Tamaroa_in_the_Storm_by_Terrence_Maley_DVIDS1082872.jpg

Stanford Center For Reproducible Neuroscience

Reproducibility matters

Neuroscience research is the basis for critical decisions about health and society. Our first goal as researchers is to ensure that the results of our research will stand the test of time.

Enabling better research

We are expanding the OpenfMRI project into a free and open platform that will enable the analysis and sharing of neuroimaging data, harnessing the power of high-performance computing to improve the quality of research.

From data to discovery

Our platform will provide neuroimaging researchers with leading-edge tools to analyze and share large datasets, with a focus on quantifying the reproducibility of the results.

http://reproducibility.stanford.edu

Designing a more reproducible scientific enterprise

FOOLING OURSELVES

HUMANS ARE REMARKABLY GOOD AT SELF-DECEPTION. BUT GROWING CONCERN ABOUT REPRODUCIBILITY IS DRIVING MANY RESEARCHERS TO SEEK WAYS TO FIGHT THEIR OWN WORST INSTINCTS.

182 | NATURE | VOL 526 | 8 OCTOBER 2015

Cognitive biases in scientific reasoning

- "The first principle is that you must not fool yourself and you are the easiest person to fool"
 - R. Feynman
- We pay more attention to information that confirms our hypotheses or biases versus those that disconfirm them
- We fail to consider alternative hypotheses that could explain the data
- We fail to consider base rates

Improving the choice architecture of science

- Choice architecture
 - particular set of features that drive people toward or away from particular choices
- Nudges
 - Improving incentives
 - Using the power of defaults
 - Providing feedback
 - Expecting and prevent errors

Improving Decisions about Health. Wealth. and Happiness Richard H. Thaler and Cass R. Sunstein ...with a new afterword

"One of the few books I've read recently that fundamentally changes the way I think about the world." --Steven Levitt, coanthor of Freakmonics

Threats to reproducibility: Low power

Power failure: why small sample size undermines the reliability of neuroscience

Katherine S. Button^{1,2}, John P. A. Ioannidis³, Claire Mokrysz¹, Brian A. Nosek⁴, Jonathan Flint⁵, Emma S. J. Robinson⁶ and Marcus R. Munafò¹

Low power -> unreliable science

Positive Predictive Value (PPV): The probability that a positive result is true

Winner's Curse: overestimation of effect sizes for significant results

 $PPV = ([1 - \beta] \times R) / ([1 - \beta] \times R + \alpha)$

Button et al., 2013

Underpowered science + publication bias: ca idate genes

A Systematic Review and Meta-Analysis on the Association Between BDNF val⁶⁶met and Hippocampal Volume—A Genuine Effect or a Winners Curse?

Marc L. Molendijk,^{1,2}* Boudewijn A.A. Bus,³ Philip Spinhoven,^{1,2,4} Anna Kaimatzoglou,¹ Richard C. Oude Voshaar,⁵ Brenda W.J.H. Penninx,^{4,5,6} Marinus H. van IJzendoorn,^{7,8} and Bernet M. Elzinga^{1,2}

Underpowered science + publication bias: ca

Identification of common variants associated with hippocampal and intracranial volumes

VOLUME 44 | NUMBER 5 | MAY 2012 NATURE GENETICS

In general, previously identified polymorphisms associated with hippocampal volume showed little association in our metaanalysis (*BDNF*, *TOMM40*, *CLU*, *PICALM*, *ZNF804A*, *COMT*, *DISC1*, *NRG1*, *DTNBP1*), nor did SNPs previously associated with schizophrenia or bipolar disorder

Sample size and power in fMRI studies

- Median study in 2015 was powered for find a single 200 voxel activation with d~0.75
- Is that plausible?

Thanks to Sean David and Tal Yarkoni for sample size data

Poldrack et al, submitted

Circularity inflates effect size estimates

Correlation between random simulated behavioral variable and activation across 28 subjects

~220,000 voxels p < 0.001 10 voxels cluster threshold

Cohen's d = 3.5

https://github.com/poldracklab/ScanningTheHorizon

Estimating realistic effect sizes

HCP motor task data group analysis

group map

Regions of Interest

Primary Motor; Premotor; Striatum; Retinotopic Visual Areas

motor

An automated meta-analysis of 2081 studies

Maps Studies FAQs

z-score: 19.49 What's here? x: 0 y: -4 z: 58

What are realistic effect sizes for fMRI?

Estimated from HCP task data using combined anatomical + neurosynth ROIs

Poldrack et al, 2016, NRN

 "My result isn't significant, so I need to add more subjects..."

Sample size flexibility

Fig. 1. Likelihood of obtaining a false-positive result when data collection ends upon obtaining significance ($p \le .05$, highlighted by the dotted line). The figure depicts likelihoods for two minimum sample sizes, as a function of the frequency with which significance tests are performed.

-Simmons et al., 2011, Psychological Science

Improvement: always predetermine sample size

neuropowertools.org

NeuroPower

control at level 0.05, the minimal sample size is 40.

Joke Durnez

Improvement: Always pre-register study plans

- Register sample size and analysis plan up front
- This does not prevent exploratory analysis
 - But planned and exploratory analyses should be clearly delineated in the paper

http://www.russpoldrack.org/2016/09/why-preregistration-no-longer-makes-me.html

Threats to reproducibility: high dimensionality

Correlation between random simulated behavioral variable and activation across 28 subjects

~220,000 voxels p < 0.001 10 voxels cluster threshold

https://github.com/poldracklab/ScanningTheHorizon

Need for statistical corrections

Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon: An argument for multiple comparisons correction

Craig M. Bennett¹, Abigail A. Baird², Michael B. Miller¹, and George L. Wolford³

<u>Subject.</u> One mature Atlantic Salmon (Salmo salar) participated in the fMRI study. The salmon was approximately 18 inches long, weighed 3.8 lbs, and was not alive at the time of scanning.

<u>Task.</u> The task administered to the salmon involved completing an open-ended mentalizing task. The salmon was shown a series of photographs depicting human individuals in social situations with a specified emotional valence. The salmon was asked to determine what emotion the individual in the photo must have been experiencing.

A *t*-contrast was used to test for regions with significant BOLD signal change during the photo condition compared to rest. The parameters for this comparison were t(131) > 3.15, p(uncorrected) < 0.001, 3 voxel extent threshold.

Several active voxels were discovered in a cluster located within the salmon's brain cavity (Figure 1, see above). The size of this cluster was 81 mm³ with a

Identical *t*-contrasts controlling the false discovery rate (FDR) and familywise error rate (FWER) were completed. These contrasts indicated no active voxels, even at relaxed statistical thresholds (p = 0.25).

Improvement: Use nonparametri corrections

Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates

Anders Eklund^{a,b,c,1}, Thomas E. Nichols^{d,e}, and Hans Knutsson^{a,c}

PNAS | July 12, 2016 | vol. 113 | no. 28

- Common cluster-based methods perform badly at low cluster-forming thresholds
- Nonparametric methods are preferred

Threats to reproducibility: Methodological flexibility

- Using standard FSL analysis options
 - 69,120 possible analysis workflows

Processing step	Reason	Options	Number of plausible options
Motion correction	Correct for head motion during scanning	Interpolation [linear vs. sinc] Reference volume [single vs. mean]	4
Slice timing correction	Correct for differences in acquisition timing of different slices	No/before motion correction/after motion correction	3
Field map correction	Correct for distortion due to magnetic susceptibility	Yes/No	2
Spatial smoothing	Increase SNR for larger activations and ensure assumptions of Gaussian random field theory	FWHM [4/6/8 mm]	3
Spatial normalization	Warp individual brain to match a group template	Method [linear/nonlinear]	2
High pass filter	Remove low-frequency nuisance signals from data	Frequency cutoff [100, 120]	2
Head motion regressors	Remove remaining signals due to head motion via statistical model	Yes/No If Yes: 6/12/24 parameters or single timepoint "scrubbing" regressors	5
Hemodynamic response	Account for delayed nature of hemodynamic response to neuronal activity	Basis function [single- gamma, double-gamma] Derivatives [none/shift/dispersion]	6
Temporal autocorrelation model	Model for the temporal autocorrelation inherent in fMRI signals.	Yes/no	2
Multiple comparison correction	Correct for large number of comparisons across the brain	Voxel-based GRF, Cluster- based GRF, FDR, nonparameteric	4
Total possible workflows			69,120

Threats to reproducibility: Methodological flexibility

frontiers in ORIGINAL RESEARCH ARTICLE published: 11 October 2012 published: 11 October 2012 doi: 10.3389/fnins.2012.00149 Incompare 1000000000000000000000000000000000000	
--	--

On the plurality of (methodological) worlds: estimating the analytic flexibility of fMRI experiments

Joshua Carp*

6,912 pipelines

P-hacking: Anything can become significant

Study 2: musical contrast and chronological rejuvenation

...we asked 20 University of Pennsylvania undergraduates to listen to either "When I'm Sixty-Four" by The Beatles or "Kalimba." Then, in an ostensibly unrelated task, they indicated their birth date (mm/dd/ yyyy) and their father's age. We used father's age to control for variation in baseline age across participants.

An ANCOVA revealed the predicted effect: According to their birth dates, people were nearly a year-and-a-half younger after listening to "When I'm Sixty-Four" (adjusted M = 20.1 years) rather than to "Kalimba" (adjusted M = 21.5 years), F(1, 17) = 4.92, p = .040.

-Simmons et al., 2011, Psychological Science

P-hacking: Anything can become significant

Table 1. Likelihood of Obtaining a False-Positive Result

	Significance level		
Researcher degrees of freedom	p < .1	р < .05	p < .0۱
Situation A: two dependent variables ($r = .50$)	17.8%	9.5%	2.2%
Situation B: addition of 10 more observations per cell	14.5%	7.7%	1.6%
Situation C: controlling for gender or interaction of gender with treatment	21.6%	11.7%	2.7%
Situation D: dropping (or not dropping) one of three conditions	23.2%	12.6%	2.8%
Combine Situations A and B	26.0%	14.4%	3.3%
Combine Situations A, B, and C	50.9%	30.9%	8.4%
Combine Situations A, B, C, and D	81.5%	60.7%	21.5%

-Simmons et al., 2011, Psychological Science

Multiple comparison correction

- Assessed latest 100 papers matching query for fMRI activation studies
 - 65 reported whole-brain activation data
 - Good news
 - only 3 papers reported uncorrected results
 - Bad news
 - 11% of papers analyzed data using SPM/FSL but then corrected for multiple comparisons using AFNI's alphasim/3dclustsim
 - Why is this a problem?

P-hacking multiple comparison correction?

Together, the lower group smoothness and the bug in 3dClustSim resulted in cluster extent thresholds that are much lower compared with SPM and FSL (*SI Appendix*, Fig. S16), which resulted in particularly high FWE rates. We find this to be alarming, as 3dClust-Sim is one of the most popular choices for multiple-comparisons correction (26).

• Eklund et al., 2016, PNAS

lt's not just fMRI

PSYCHOPHYSIOLOGY

Psychophysiology, 54 (2017), 146–157. Wiley Periodicals, Inc. Printed in the USA. Copyright © 2016 Society for Psychophysiological Research DOI: 10.1111/psyp.12639

How to get statistically significant effects in any ERP experiment (and why you shouldn't) STEVEN J. LUCK^{a,b} AND NICHOLAS GASPELIN^a

The purpose of this paper is to demonstrate how common and seemingly innocuous methods for quantifying and analyzing ERP effects can lead to very high rates of significant but bogus effects, with the likelihood of obtaining at least one such bogus effect exceeding 50% in many experiments.

Improvement: Pre-planned analyses

- If data are going to inform analysis choices, then split into discovery and validation sets
 - Must be kept strictly separate!
 - Torture the discovery set as you wish
 - Apply the final analysis to the validation set only after it has been fixed based on discovery set
 - Preferably do a two-stage pre-registration

Improvement: Increased stringency

Title: Redefine Statistical Significance

Authors: Daniel J. Benjamin¹*, James O. Berger², Magnus Johannesson³*, Brian A. Nosek^{4,5}, E.-J. Wagenmakers⁶, Richard Berk^{7, 10}, Kenneth A. Bollen⁸, Björn Brembs⁹, Lawrence Brown¹⁰, Colin Camerer¹¹, David Cesarini^{12, 13}, Christopher D. Chambers¹⁴. Merlise Clyde², Thomas D. Cook^{15,16}, Paul De Boeck¹⁷, Zoltan Dienes¹⁸, Anna Dreber³, Kenny Easwaran¹⁹, Charles Efferson²⁰, Ernst Fehr²¹, Fiona Fidler²², Andy P. Field¹⁸, Malcolm Forster²³, Edward I. George¹⁰, Richard Gonzalez²⁴, Steven Goodman²⁵, Edwin Green²⁶, Donald P. Green²⁷, Anthony Greenwald²⁸, Jarrod D. Hadfield²⁹, Larry V. Hedges³⁰, Leonhard Held³¹, Teck Hua Ho³², Herbert Hoijtink³³, James Holland Jones^{39,40}, Daniel J. Hruschka³⁴, Kosuke Imai³⁵, Guido Imbens³⁶, John P.A. Ioannidis³⁷, Minjeong Jeon³⁸, Michael Kirchler⁴¹, David Laibson⁴², John List⁴³, Roderick Little⁴⁴, Arthur Lupia⁴⁵, Edouard Machery⁴⁶, Scott E. Maxwell⁴⁷, Michael McCarthy⁴⁸, Don Moore⁴⁹, Stephen L. Morgan⁵⁰, Marcus Munafó^{51, 52}, Shinichi Nakagawa⁵³, Brendan Nyhan⁵⁴, Timothy H. Parker⁵⁵, Luis Pericchi⁵⁶, Marco Perugini⁵⁷, Jeff Rouder⁵⁸, Judith Rousseau⁵⁹, Victoria Savalei⁶⁰, Felix D. Schönbrodt⁶¹, Thomas Sellke⁶², Betsy Sinclair⁶³, Dustin Tingley⁶⁴, Trisha Van Zandt⁶⁵, Simine Vazire⁶⁶, Duncan J. Watts⁶⁷, Christopher Winship⁶⁸, Robert L. Wolpert², Yu Xie⁶⁹, Cristobal Young⁷⁰, Jonathan Zinman⁷¹, Valen E. Johnson⁷²*

One Sentence Summary: We propose to change the default P-value threshold for statistical significance for claims of new discoveries from 0.05 to 0.005 Yes, this will require larger sample sizes to maintain sufficient power!

How many of you have written computer code in the course of your research? How many of you have been trained in software engineering?

How many of you have ever written a test for your code?

Threats to reproducibility: software errors

Geoffrey Genange December 2006; SEE LAST PAGE

Structure of MsbA from *E. coli*: A Homolog of the Multidrug Resistance ATP Binding Cassette (ABC) Transporters

Geoffrey Chang* and Christopher B. Roth

Multidrug resistance (MDR) is a serious medical problem and presents a major challenge to the treatment of disease and the development of novel therapeutics. ABC transporters that are associated with multidrug resistance (MDR-ABC transporters) translocate hydrophobic drugs and lipids from the inner to the outer leaflet of the cell membrane. To better elucidate the structural basis for the "flip-flop" mechanism of substrate movement across the lipid bilayer, we have determined the structure of the lipid flippase MsbA from *Escherichia coli* by x-ray crystallography to a resolution of 4.5 angstroms. MsbA is organized as a homodimer with each subunit containing six transmembrane α -helices and a nucleotide-binding domain. The asymmetric distribution of charged residues lining a central chamber suggests a general mechanism for the translocation of substrate by MsbA and other MDR-ABC transporters. The structure of MsbA can serve as a model for the MDR-ABC transporters that confer multidrug resistance to cancer cells and infectious microorganisms.

RETRACTED 22 DECEMBER 2006; SEE LAST PAG

Structure of the ABC Transporter MsbA in Complex with ADP·Vanadate and Lipopolysaccharide

Christopher L. Reyes and Geoffrey Chang*

Select members of the adenosine triphosphate (ATP)–binding cassette (ABC) transporter family couple ATP binding and hydrolysis to substrate efflux and confer multidrug resistance. We have determined the x-ray structure of MsbA in complex with magnesium, adenosine diphosphate, and inorganic vanadate (Mg·ADP·V_i) and the rough-chemotype lipopolysaccharide, Ra LPS. The structure supports a model involving a rigid-body torque of the two transmembrane domains during ATP hydrolysis and suggests a mechanism by which the nucleotide-binding domain communicates with the transmembrane domain. We propose a lipid "flip-flop" mechanism in which the sugar groups are sequestered in the chamber while the hydrophobic tails are dragged through the lipid bilayer.

13 MAY 2005 VOL 308 SCIENCE www.sciencemag.org

X-ray Structure of the EmrE Multidrug Transporter in Complex with a Substrate

Owen Pornillos, Yen-Ju Chen, Andy P. Chen, Geoffrey Chang*

EmrE is a prototype of the Small Multidrug Resistance family of efflux transporters and actively expels positively charged hydrophobic drugs across the inner membrane of *Escherichia coli*. Here, we report the x-ray crystal structure, at 3.7 angstrom resolution, of one conformational state of the EmrE transporter in complex with a translocation substrate, tetraphenylphosphonium. Two EmrE polypeptides form a homodimeric transporter that binds substrate at the dimerization interface. The two subunits have opposite orientations in the membrane and adopt slightly different folds, forming an asymmetric antiparallel dimer. This unusual architecture likely confers unidirectionality to transport by creating an asymmetric substrate translocation pathway. On the basis of available structural data, we propose a model for the proton-dependent drug efflux mechanism of EmrE.

23 DECEMBER 2005 VOL 310 SCIENCE www.sciencemag.org

poldracklab.org

Threats to reproducibility: software errors

Retraction

WE WISH TO RETRACT OUR RESEARCH ARTICLE "STRUCTURE OF MsbA from *E. coli*: A homolog of the multidrug resistance ATP binding cassette (ABC) transporters" and both of our Reports "Structure of the ABC transporter MsbA in complex with ADP•vanadate and lipopolysaccharide" and "X-ray structure of the EmrE multidrug transporter in complex with a substrate" (1-3).

The recently reported structure of Sav1866 (4) indicated that our MsbA structures (1, 2, 5) were incorrect in both the hand of the structure and the topology. Thus, our biological interpretations based on these inverted models for MsbA are invalid.

An in-house data reduction program introduced a change in sign for anomalous differences. This program, which was not part of a conventional data processing package, converted the anomalous pairs (I+ and I–) to (F– and F+), thereby introducing a sign change. As the diffraction data collected for each set of MsbA crystals and for the EmrE crystals were processed with the same program, the structures reported in (1-3, 5, 6) had the wrong hand.

Small errors can have big effects

23-class classification problem

```
skf=StratifiedKFold(labels,8)
```

```
if trainsvm:
pred=N.zeros(len(labels))
for train,test in skf:
    clf=LinearSVC()
    clf.fit(data[train],labels[train])
    pred[test]=clf.predict(data[test])
```

data[:,train]

data[:,test]

Results: 93% accuracy

Results: 53% accuracy

http://www.russpoldrack.org/2013/02/anatomy-of-coding-error.html

poldracklab.org

Bug-hacking

 Bugs that confirm our predictions are less likely to be uncovered than bugs that disconfirm them

Improvement: The principle of assumed error

- Whenever you find a seemingly good result (e.g. one that fits your predictions), assume that it occurred due to an error in your code
- Protects from "bug hacking"

Improvement: Software testing and validation

- Smoke tests and unit tests may be useful but are not sufficient
- For complex analyses:
 - Parameter recovery: Generate data for which the true answer is known, and assess ability of code to recover the correct answer
 - Randomization: Generate data for which the null hypothesis of no relationship should be true on average, and ensure that the observed false positive rate is accurate (cf. Eklund et al., 2016, PNAS)

http://www.russpoldrack.org/2016/08/the-principle-of-assumed-error.html

Improvement: Use established libraries when possible

- Avoid the NIH ("not invented here") effect
 - rejecting existing solutions in favor of home-grown ones
 - "I need to write a new DICOM to Nifti converter"
- Contribute fixes/extensions to existing open source projects rather than writing your own
- Prefer libraries that use good software engineering practices

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

Improvement: Data Sharing

Poldrack & Gorgolewski, 2014

OpenfMRI: Sharing complete raw datasets

View Datasets FAQs Submit a new Dataset Login

Currently about 8.5 TB of data on S3

Brain Imaging Data Structure (BIDS)

http://bids.neuroimaging.io

Neurovault: Sharing statistical maps

NeuroVault Collections - FAQ Give feedback

Q Log in

A public repository of unthresholded statistical maps, parcellations, and atlases of the human brain

What is it?

A place where researchers can publicly store and share unthresholded statistical maps, parcellations, and atlases produced by MRI and PET studies.

Why use it?

- Interactive visualization
- A permanent URL
- Publicly shareable
- Improves meta-analyses

Supported by

Get started and upload an image!

Gorgolewski et al., 2015

Open sharing is associated with better science

OPEN O ACCESS Freely available online

Willingness to Share Research Data Is Related to the Strength of the Evidence and the Quality of Reporting of Statistical Results

Jelte M. Wicherts*, Marjan Bakker, Dylan Molenaar

Psychology Department, Faculty of Social and Behavioral Sciences, University of Amsterdam, Amsterdam, The Netherlands

Data sharing

Data Sharing

Dan L. Longo, M.D., and Jeffrey M. Drazen, M.D.

N ENGLJ MED 374;3 NEJM.ORG JANUARY 21, 2016

However, many of us who have actually conducted clinical research, managed clinical studies and data collection and analysis, and curated data sets have concerns about the details. The first concern is that someone not involved in the generation and collection of the data may not understand the choices made in defining the parameters....

A second concern held by some is that a new class of research person will emerge — people who had nothing to do with the design and execution of the study but use another group's data for their own ends, possibly stealing from the research productivity planned by the data gatherers, or even use the data to try to disprove what the original investigators had posited. There is concern among some front-line researchers that the system will be taken over by what some researchers have characterized as "research parasites."

Revenge of the parasites

poldracklab.org

Data Sharing and the Journal

Jeffrey M. Drazen, M.D.

This article was published on January 25, 2016, at NEJM.org.

We want to clarify, given recent concern about our policy, that the Journal is committed to data sharing in the setting of clinical trials...In the process of formulating our policy, we spoke to clinical trialists around the world. Many were concerned that data sharing would require them to commit scarce resources with little direct benefit. Some of them spoke pejoratively in describing data scientists who analyze the data of others.³To make data sharing successful, it is important to acknowledge and air those concerns.³In our view, however, researchers who analyze data collected by others can substantially improve human health.

Why people don't share data

- Concern about being scooped
 - "The thing that matters the least is being scooped. The thing that matters the most is being ignored." Gary King
- Concern about errors being discovered
 - Don't you want to know?
- Concern about the time and effort involved
 - Sharing of statistical maps is easy and fast
 - Sharing of full dataset is easier when you format using BIDS from the beginning

Improvement: Sharing of analysis platforms

- "an article about a computational result is advertising, not scholarship. The actual scholarship is the full software environment, code and data, that produced the result." - Buckheit & Donoho, 1995
- The tale of myconnectome

Virtual machines as tools for reproducible science

This repository Search Pull requests Issues Gist			🖬 +• 🚊	
poldrack /	myconnectome-vm	③ Unwatch → 2	kr Star 0 ♀ For	k 1
Virtual machine se	etup for MyConnectome data analysis — Edit			
🕞 86 comm	nits IP 1 branch 🗞 0 releases	3 contributors	<> Code	
th Branch: mas	ter - myconnectome-vm / +	:=	() Issues	0
Merge pull request #14 from vsoch/master ····			1 Pull requests	0
poldrack authored 23 days ago latest commit 3b45da4ddb 🔂			🗉 Wiki	
	Initial commit	2 months ago	A Dulas	
README.md	Update README.md	24 days ago		
Vagrantfile	removing supervisor controller from application - will be run with st	23 days ago	III Graphs	
I README.md			X Settings	
			SSH clone URL	
MyCo	onnectome-VM: A virtual machi	ne to	git@github.com:pold	È
imple	ment MyConnectome analyses	5.	You can clone with HTTPS or Subversion. ③	, SSH
			Clone in Desktop	
body across an extended period of time in a single individual. One of the major goals of the project is		nd, brain, and	C Download ZIP	
body doroso				

Reproducible computing: VMs and containers

Virtual machines

Docker containers

BIDS Apps

A collection of containerized neuroimaging workflows and pipelines that accept datasets organized according to the Brain Imaging Data Structure (BIDS).

O http://bids.neuroimaging.io

Use Data

Use our available pipelines to process any data on the site.

MORE +

Browse and download datasets from contributors all over the world.

your colleagues or share it with users around the world.

Upload your data and collaborate with

OpenNeuro Suite

- A set of workflows developed for the OpenNeuro project
 - Glass-box philosophy
 - Expose as many details as possible through detailed reports
 - Reproducibility
 - Versioned containers for Docker/ Singularity
 - Robustness
 - Testing with continuous integration
 - Community-driven
 - Heavily based on user feedback

mriqc: a robust quality control workflow

Robust Image Quality Metrics (IQMs)

Quality Assessment of T1w and fMRI

Automated classification of T1w (Esteban et. al 2017)

Visual reports

Ease and speed up individual eyeballing

Group reports: distribution of each IQM

Easy to use

I/O Standardization:

BIDS for inputs

BIDS-Apps for command line

Containerized:

Docker (poldracklab/mriqc)

Singularity (HPC friendly containers)

mriqc.org

No high-frequency spikes were found in this dataset

Esteban et al., in press, PLOS One

fmriprep: a robust and transparent preprocessing pipeline

Robust

takes any dataset, combines well tested tools across packages to provide the best results

Easy to use

Uses containers, works on Win, Mac, Linux and HPCs. Takes standardized datasets (BIDS) and outputs standardized derivatives.

Transparent

Produces interactive reports that allow you to check quality in minutes.

http://fmriprep.org

OPEN **OPEN OPEN OPEN OPEN OPEN**

4 Ten Simple Rules for Reproducible Computational Research

PLOS COMPUTATIONAL BIOLOGY

Geir Kjetil Sandve^{1,2}*, Anton Nekrutenko³, James Taylor⁴, Eivind Hovig^{1,5,6}

• Rule 1: For Every Result/Figure, Keep Track of Exactly How It Was Produced Corollary: Avoid Manual Data Manipulation Steps

Growth in a Time of Debt

By CARMEN M. REINHART AND KENNETH S. ROGOFF*

American Economic Review: Papers & Proceedings 100 (May 2010): 573–578 http://www.aeaweb.org/articles.php?doi=10.1257/aer.100.2.573

Reinhard & Rogoff have clearly exerted a major influence in recent years on public policy debates over the management of government debt and fiscal policy more broadly. Their findings have provided significant support for the austerity agenda that has been ascendant in Europe and the United States since 2010. - Herndon et al., 2013

The Washington Post

Wonkblog

Debt, Grow Isd the total encode for austerity based on an Excel spreadsheet error?

By Brad Plumer April 16, 2013

"Reinhart and Rogoff appear to have made an error with one of their Excel spreadsheet formulas. By typing AVERAGE(L30:L44) at one point instead of AVERAGE(L30:L49), they left out Belgium, a key counterexample [to their claim]"

Debt, Growth and the Austerity Debate

By CARMEN M. REINHART and KENNETH S. ROGOFF APRIL 25, 2013

Last week, three economists at the University of Massachusetts, Amherst, released a <u>paper</u> criticizing our findings. They correctly identified a spreadsheet coding error that led us to miscalculate the growth rates of highly indebted countries since World War II. • Rule 2: Use version control for all computer code

VS.

RTanalysis_script3_June1_good_try4.R

• Rule 3: Build quality control into your analyses

CORRECTION

Correction: The Role of Conspiracist Ideation and Worldviews in Predicting Rejection of Science

Stephan Lewandowsky, Gilles E. Gignac, Klaus Oberauer

The dataset included two notable age outliers (reported ages 5 and 32757).

Specifically, the statement on page 9 "age turned out not to correlate with any of the indicator variables" is incorrect. It should read instead "age correlated significantly with 3 latent indicator variables (Vaccinations: .219, p < .0001; Conservatism: .169, p < .001; Conspiracist ideation: -.140, maximum likelihood p < .0001, bootstrapped p = .004), and straddled significance for a fourth (Free Market: .08, p%.05)."

In [1]: age=32757

In [2]: assert age>12 and age<120
AssertionError
Traceback (most recent call last)
<ipython-input-2-37de876b5fda> in <module>()
----> 1 assert age>12 and age<120</pre>

AssertionError:

• Rule 4: Make your data, code, and results public

Publish your computer code: it is good enough

Freely provided working code - whatever its quality - improves programming and enables others to engage with your research, says **Nick Barnes**.

14 OCTOBER 2010 | VOL 467 | NATURE | 753

Conclusions

- Human cognitive biases work against the goals of science
- We need to redesign the choice architecture of neuroimaging methods so that it prevents rather than affords fooling ourselves
- Doing these things will make your life harder but make your science better
 - If every experiment "works" then are we really doing interesting science?

Acknowledgments

Tal Yarkoni Robert Bilder Niki Kittur Stephen J. Hanson Yaroslav Halchenko

National Institute on Drug Abuse

James S. McDonnell Foundation

The Poldrack Lab @ Stanford

http://reproducibility.stanford.edu

Data sets and code will be made available at <u>www.openfmri.org</u>

poldracklab.org