CRN resources
The Center for Reproducible Neuroscience produces a variety of software resources (such as fmriprep and mriqc). In this tutorial, you will learn about some of them.
Docker for scientists
An overview of Docker and other containerization technologies: what containers are, why they’re useful, how to install them, and how to use them. Slides and materials available on GitHub: https://github.com/neurohackweek/docker-for-scientists.
Git/Github
A tutorial on version control using git and GitHub.
Introduction to Neurohackweek
Setting the stage, and explaining what will happen in the next couple of weeks.
Introduction to Python
A brief overview of the Python programming language, with an emphasis on tools relevant to data scientists. An interactive Jupyter Notebook (which also doubles as the slides) is available here.
Machine learning with scikit-learn
This session will cover the basics of Scikit-Learn, a popular package containing a collection of tools for machine learning written in Python. See more at http://scikit-learn.org. Outline Main Goal: To introduce the central concepts of machine learning, and how they can be applied in Python using the Scikit-learn Package. Definition of machine learning Data representation in scikit-learn […]
Python packaging
In this tutorial, we will work through setting up a scientific Python package. This will provide an opinionated introduction to some of the ins and outs of Python packaging and package distribution.
Reproducibility in fMRI: What is the problem?
A review of barriers to reproducible neuroimaging research, and some potential solutions.
Science: open for all
How to practice and promote an inclusionary, welcoming open science. Slides can be found here.
Software testing
An introduction to software testing for scientific code. Materials available here; source code for all materials here.